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Abstract
A theoretical investigation is made of the plasma-wave instability mechanism
in a two-dimensional (2D) electron fluid in a field-effect transistor (FET) in the
presence of a perpendicular magnetic field. The influence of electron collisions
with impurities and/or phonons is also taken into account. The 2D electron
fluid in the FET channel is treated within the framework of hydrodynamics.
The treatment is valid for a nondegenerate electron fluid in which the mean
free path for interelectronic collisions is much smaller than the device length
and the mean free path due to impurities and/or phonons. It is shown that
a relatively low direct current should be unstable because of magnetoplasma-
wave amplification due to the reflection of the wave from the device boundaries.
The role of an applied magnetic field is additive: the greater the magnetic field,
the larger the wave increment. In that sense an applied magnetic field may be
used to compensate (or overcome) the subtractive role played by collisions on
plasma-wave generation. Such a ballistic FET is promising for the generation
of tunable electromagnetic radiation in the terahertz frequency range.

1. Introduction

The past two decades have seen a great deal of research effort in the investigation of semi-
conducting systems of reduced dimensionality. As the dimensions of semiconductor devices
get smaller, the probability that electrons can traverse them without scattering at all, i.e.,
ballistically, increases. Under such conditions the transport of electrons in the solid resembles
that in vacuum, but with the effective mass and group velocity of the electrons in the
semiconductor. A classic, purely ballistic transport model in a planar n–i–n structure was first
proposed by Shur and Eastman [1]. Experimental observation of ballistic effects primarily
involved vertical devices called hot-electron transistors [2]. An earlier review of the subject,
both experimental and theoretical, can be found in reference [3].
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Subsequently, Dyakonov and Shur [4] demonstrated that a relatively low direct current in
a ballistic field-effect transistor (FET) may become unstable. This instability was interpreted
as being a result of the plasma-wave amplification due to the wave’s reflection from the
device boundaries. It was argued that this provides a practically realizable mechanism for
the generation of tunable electromagnetic radiation in the terahertz frequency range. It is
noteworthy that the theoretical explanation of the said effect was based on the fact that the
mean free path for electron–electron scattering, λee, in a FET may be much smaller than the
channel length, L, as well as than the mean free path for electron collisions with impurities
and/or phonons, λcoll , which determine the electron mobility in the device. Consequently, the
electrons in a FET channel behave like a fluid describable on the basis of the hydrodynamics
for shallow water. In this analogy the plasma waves in the FET channel play the role of shallow
water waves. It should be pointed out that the instability criterion predicted in reference [4]
was noticed in the linear approximation.

Later, the same authors [5] investigated a mechanism of current saturation in a FET
caused by the choking of electron flow, similar to that of a gas flow in a pipe [6]. It was
shown that the choking phenomenon in the samples should lead to a large variation in the
current–voltage characteristics. While Dyakonov and Shur [4] limited their analysis to the
linear approximation, Gelmont [7] embarked on consideration of the nonlinear evolution of
the current instability in a ballistic FET in the case where the electron fluid velocity was closer
to the plasma-wave velocity. However, he concentrated on an idealized situation where the
viscosity of the electron fluid, associated with electron–electron scattering, and collisions with
impurities and/or phonons were absent. These effects are also, respectively, termed the internal
friction and external friction. For this case, Gelmont demonstrated that discontinuities in the
distribution of the electron concentration and velocity may be formed in the FET channel which
are analogous to hydraulic jumps [8].

Similar efforts in studying the nonlinear evolution of the current instability in a ballistic
FET were made by Furman and collaborators [9,10]. They considered the case of relatively low
electron–fluid velocity and also incorporated the effects of external and internal frictions. It was
demonstrated that the occurrence of the instability leads to the establishing of small-amplitude
stationary oscillations with amplitude proportional to the square root of the increment.

Conceptual diagnoses of the current instability in a 2D electron fluid in a high-electron-
mobility transistor (HEMT) are already becoming known to have paved the way to its wide
applications in a new generation of terahertz devices [11]. Examples include sources, detect-
ors, mixers, multipliers, and oscillators. The experimental and theoretical details of how the
propagation of plasma waves in a HEMT can be used to realize such plasma-wave electronic
devices operating at terahertz frequencies can be found in reference [11]. It is believed that
the HEMT-based sources or detectors utilizing plasma waves should operate at much higher
frequencies than the conventional transit-time-limited devices. This is simply because the
plasma waves propagate much faster than electrons. Shur and collaborators estimate that
these terahertz devices should outperform the conventional terahertz devices, which use deep-
submicron Schottky diodes.

The purpose of this paper is to investigate the influence of a magnetic field, applied
perpendicularly to the 2DEG, and the external friction on the current instability mechanism
in a GaAs-based ballistic FET channel (figure 1). While the external friction accounts for
nonzero temperature effects in a realistic situation, an external magnetic field introduces an
additional length scale, the magnetic length �c = √

h̄/mωc, which may (and usually does)
give deeper insight into the problem. The rest of the physical conditions associated with the
2DEG in a short FET channel are assumed to be the same as in reference [4] so that the 2DEG
is describable within the laws of hydrodynamics. For this to be the case the magnetic field
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Figure 1. A schematic diagram of a FET. The mean free path for electron–electron scattering λee ,
the gate length L, and the mean free path for electron collisions with impurities and/or phonons
λcoll satisfy the inequality λee � L � λcoll .

must be sufficiently weak. With explicit illustrative examples, we demonstrate that an applied
magnetic field can not only overcome the subtractive role played by the external friction,
but also modify the direct-current instability in a FET channel over the regime of parameters
investigated.

The rest of the paper is organized as follows. In section 2 we present the formalism
and derive the final expression employed to study the instability mechanism. In section 3 we
present a few illustrative examples. Finally, in section 4 we present a brief discussion of the
results and pinpoint some dimensions worth adding to the problem in the future.

2. Formalism

In this paper we will limit ourselves to the case where the internal friction is zero. We first treat
the case where the external friction is treated exactly and the magnetic field is zero. Then we
generalize the treatment to include the magnetic field exactly and consider the external friction
in a reasonably approximate way.

2.1. Zero magnetic field

We start with the hydrodynamic equations for the 2D electrons with a dissipative term νV ,
which describes the electron collisions with impurities and/or phonons:

∂V

∂t
+ V

∂V

∂x
+ νV = − e

m

∂U

∂x
(1)

where V (x, t) is the local hydrodynamic electron velocity. Here U = Ugc(x) − UT ; Ugc
is the local gate-to-channel voltage swing, UT is the threshold voltage, and ∂U/∂x is the
longitudinal electric field in the channel. The phenomenological relaxation time τ = ν−1

accounts for electron scattering by the impurities and/or phonons. Equation (1) is analogous
to the hydrodynamic Navier–Stokes equation, withU corresponding to the shallow water level
and V to the local velocity of the water flow. Equation (1), usually termed the Euler equation
of motion, has to be solved together with the equation of continuity

∂U

∂t
+
∂(UV )

∂x
= 0. (2)

The surface carrier concentration ns in the FET channel is given by

ns = CU/e (3)
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where C is the gate capacitance per unit area and e is the electron charge. Equation (3)
represents the gradual channel approximation [4], which is valid when the characteristic scale
of the potential variation in the channel is much greater than the gate-to-channel separation d.
Note that equation (3) was used in writing equation (2).

Now we consider the situation where the source and drain are connected to a current source
and the gate and source are connected to a voltage source,UGS . This corresponds to a constant
value of the potential at the source (x = 0) and to a constant value of the current at the drain
(x = L). These boundary conditions correspond to zero impedance at the source and an infinite
impedance at the drain and are analogous to those for a transmission line, short-circuited at
one end and open at the other. However, in contrast to the transmission line, the plasma-wave
velocities in our system differ for the opposite directions of propagation. Our purpose here
is to show that this velocity difference leads to the instability of the steady electron flow with
respect to the plasma-wave generation. To this end we will embark on studying the temporal
behaviour of a small fluctuation superimposed on a steady uniform flow.

We linearize equations (1) and (2) by setting

V = V0 + V1 exp(−iωt) U = U0 + U1 exp(−iωt).

The result is a set of two coupled equations for the unknowns V1 and U1. These unknowns are
then allowed a spatial dependence of the form

Q = Reλx (4)

where Q(R) ≡ V1(V 1), U1(U 1); this leads to the set of equations

(λV0 − iω + ν)V 1 + λ(e/m)U 1 = 0 (5)

and

λU0V 1 + (λV0 − iω)U 1 = 0. (6)

For a nontrivial solution, the determinant of the coefficients must vanish. This leads to

(λV0 − iω)(λV0 − iω + ν)− s2λ2 = 0 (7)

where s = (eU0/m)
1/2 is the plasma-wave velocity. It is convenient to solve for λ from

equation (7) in terms of the effective wavenumber k = ω/s and the Mach number r0 = V0/s.
We write

λ1,2 = ± i

2(1 − r2
0 )

[√
(k − k′)2r2

0 + 4kk′ ∓ (k + k′)r0

]
(8)

where k′ = k + ikν , with kν = ν/s. Applying the boundary conditions expressed in the forms
U(0, t) = U0 and U(L, t)V (L, t) = U0V0 yields

β1eλ1L − β2eλ2L = 0 (9)

where

βi = (λj r0 − ik′)
[
λi(1 − r2

0 ) + ik′r0
]

(10)

and i, j ≡ 1, 2. Equation (9) is further simplified to give

e2(λ1r−λ2r )L − (a2 + b2)/c2 = 0 (11)

where

a = β1rβ2r + β1iβ2i b = β1rβ2i − β2rβ1i c = β2
1r + β2

1i .

Here λjr is the real part of λj , j ≡ 1, 2. Similarly, βjr (βji) is the real (imaginary) part of
βj . Equation (11) is the one that is solved at the computational level. This is a transcendental
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function which is obtained by substituting k = kr + iki where kr and ki are the real and
imaginary parts of k, respectively. Thus equation (11) is an expression where a group of four
parameters, r0, kν , kr , and ki , are inseparably interwoven.

In the absence of external friction, i.e., for k′ = k, equation (8) simplifies to

λ1,2 = ± ik

(1 ± r0)
(12)

and equation (10) reduces to

β1,2 = ± k2

(1 ∓ r0)
. (13)

Then equation (9) assumes the form

e(λ1−λ2)L +
1 − r0

1 + r0
= 0. (14)

This equation when further solved yields two independent expressions:

kr = |1 − r2
0 |

2L
πn (15)

where n is an integer including zero, and

ki = 1 − r2
0

2L
ln

∣∣∣∣ 1 + r0
1 − r0

∣∣∣∣ . (16)

Equations (15) and (16) are exactly the same as equations (4) and (5) in reference [4]. It is a
simple matter to understand that r0 = ±1 and r0 = 0 imply zero instability in the system.

2.2. Nonzero magnetic field

In this case we start with the hydrodynamic equations for 2D electrons in the presence of an
applied magnetic field 
B giving rise to the Lorentz force e( 
V × 
B):

∂ 
V
∂t

+ 
V · 
∇ 
V + ν 
V = e

m

[
−
∇U + 
V × 
B

]
. (17)

Equation (17) has to be solved together with the equation of continuity,

∂U

∂t
+ 
∇ · (U 
V ) = 0. (18)

Notice that equations (17) and (18) are vectorial, due to the presence of the Lorentz force, in
contrast with equations (1) and (2) which are scalar. Just as before, we will limit ourselves
to the consideration of the magnetoplasma waves and demonstrate that such waves may grow
in time due to reflections from the device boundaries under boundary conditions specific to
a FET channel. The description provided by equations (17) and (18) is valid only for weak
magnetic fields for which Landau quantization is absent.

We fix the orientation of the applied magnetic field such that 
B ‖ ẑ-direction, and
linearize equations (17) and (18) just as before. Then we obtain a set of three equations,
from equations (17) and (18), in terms of three unknowns: V1x , V1y , and U1. These three
unknowns are then allowed a spatial dependence of the form

I = J eλ(x+y) (19)

where I (J ) ≡ V1x(A), V1y(B), and U1(C). We take the same ‘damping constant’ λ along
x and y mostly for mathematical tractability. This is also a reasonable approximation in the
linear regime, i.e., as long as the source–drain field ∝ ∂U/∂x is small.



10110 M S Kushwaha and P Vasilopoulos

The resulting equations for the coefficients A, B, and C, in matrix form, are[
(α1 + 2α2λ) −α3 α4λ

α3 (α1 + 2α2λ) α4λ

α5λ α5λ (1 + 2α2λ)

] [
A

B

C

]
=

[ 0
0
0

]
(20)

where

α1 = 1 + iγ α2 = iV0/
√

2ω α3 = iωc/ω α4 = ie/mω α5 = iU0/ω.

Here, ωc = eB/m is the electron cyclotron frequency and γ = ν/ω. For a nontrivial solution
of this set of equations the determinant of the coefficients must vanish. The result is

(1 + 2α2γ )

[
(α1 + 2α2λ)

2 + α2
3 − 2α4α5λ

2

(
1 +

iγ

1 + 2α2λ

)]
= 0. (21)

We neglect the term iγ /(1 + 2α2λ) and write

(1 + 2α2γ )
[
(α1 + 2α2λ)

2 + α2
3 − 2α4α5λ

2
] � 0. (22)

This approximation not only allows us to get rid of the complexity of solving a cubic equation,
hence leaving us mostly with a numerical solution of the problem, but also provides us with
reasonable grounds for having a physical feeling for the external friction in the problem.
Obviously it is reasonable approximation when γ is very small. Either the first (· · ·) or the
second [· · ·] factor in equation (22) is zero. Equating the first factor to zero gives

λ = i√
2

ω

V0
. (23)

This root, which is independent of the collisional frequency ν, the plasma-wave velocity s,
and the cyclotron frequency ωc, is of no interest. Equating the square bracket in equation (22)
to zero yields

λ1,2 = 1

2p

[
−q ±

√
q2 − 4pr

]
(24)

where p, q, and r are, in general, complex quantities defined by

p = 2(2α2
2 − α4α5) q = 4α1α2 r = α2

3 + α2
1 .

It is not difficult to understand the special limits of (i) γ = 0 and (ii) B = 0 and γ = 0. In the
first case, which implies α1 = 1, one is left with

λ1,2 = ± ik√
2(1 − r0)

[√
1 − k2

c

k2
(1 − r2

0 )∓ r0

]
(25)

where kc = ωc/s. Imposing further the limit of zero magnetic field (⇒kc = 0) and thereby
expecting to obtain equation (12) requires replacing

√
2 λ by λ. In the presence of the Lorentz

force, which makes the basic equations vectorial, such a situation prevails simply because we
are considering the dynamical variables (i.e., velocity, propagation vector, etc) along both
x̂- and ŷ-directions, as well as their dependences. The situation simplifies considerably
in the zero-field case because there the ŷ-direction plays no role at all. Remember, both
solutions in equation (25) have to be matched while applying the proper boundary conditions
expressed as U1(x = 0) = 0 and 3j(x = L) = 0, which are equivalent to U(0, t) = U0

and U(L, t)V (L, t) = U0V0, respectively. Physically speaking, they express the fact that the
potential is constant at the source (x = 0) and the current is constant at the drain (x = L).
Since we consider an infinite system along y, or at least one with an extent much larger than
the magnetic or any other relevant length, the system is uniform along y and these conditions,
resulting from the asymmetry due to the source–drain field, are sufficient. However, if we were



Current instability in field-effect transistors 10111

to evaluate the Hall field Ey , in the linear regime, we would impose the condition j (y) = 0.
This would connect the Hall field along y with j (x) since Ey ∝ j (x) and thus the wave
reflection from the y-boundaries with that from the x-boundaries. This will be the subject of
a separate study.

Applying these boundary conditions yields

δ1eλ1L − δ2eλ2L = 0 (26)

where

δi = 2α2λi(α1 + α2λi)− (1 + 2α2λi)(α1 + α2λi + α3)

λi(α1 + 2α2λi)
(27)

and i ≡ 1, 2. With further manipulation equation (26) is rewritten as

e2(λ1r−λ2r )L − (A2 + B2)/C2 = 0 (28)

where

A = δ1r δ2r + δ1iδ2i B = δ1r δ2i − δ2r δ1i C = δ2
1r + δ2

1i .

Here λjr is the real part of λj , j ≡ 1, 2. Similarly, δjr (δji) is the real (imaginary) part of
δj . Equation (28) is the final expression employed to investigate direct-current instability in
the ballistic FET channel in the presence of a perpendicular magnetic field and the external
friction. This is a transcendental function where a group of five parameters (i.e., r0, kν , kc, kr ,
and ki) are inseparably interwoven, unlike in the zero-B and zero-ν case where the explicit
expressions for kr and ki are decoupled from each other; cf. equations (15) and (16).

3. Illustrative examples

Figure 2 shows the wave increment ki as a function of the Mach number r0 = V0/s. As
indicated in the figure, the solid, dashed, dash–dotted, dash–dot–dotted, and dotted curves

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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k i (
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6 /m
)

r
0
=v

0
/s

Figure 2. Plasma-wave increment ki as a function of the Mach number r0 = V0/s, in the absence
of a magnetic field. We use L = 2 µm and s = 1.5 × 105 m s−1 throughout. The other parameters
used are shown in the figure. The steady flow is unstable when 0 < r0 < 1 and r0 < −1.
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correspond, respectively, to ν (in units of 1010 s−1) equal to 0.00, 0.75, 1.50, 2.25, and 3.00.
These values correspond to the parametersL = 2µm and s = 1.5×105 m s−1 used throughout.
The value of kr is kept fixed (kr = 4.5 × 106 m−1) for all cases considered. We recall that
the steady flow is said to be unstable if ki > 0 (or, in other words, if the plasma wave grows)
and stable if ki < 0. By this token, we note that for r0 > 0, the steady flow is unstable if
0 < r0 < 1 and stable if r0 > 1. For r0 < 0 (or, in other words, if the boundary conditions at
the source and drain are interchanged), the flow is unstable if r0 < −1 and stable if r0 > −1.
Interestingly, the same conclusions were drawn in the absence of any external friction [4]. This
then leads us to infer that the presence of an external friction decreases the wave increment
but does not alter its characteristics. Moreover, such a decrement is seen to enhance with
increasing friction. It is also important to note that the net effect of the external friction is to
add a −ν/2 term to the wave increment, just as was noted in reference [4].

Figure 3 depicts the wave increment as a function of the Mach number r0 for different
intensities of the magnetic field, B, keeping kν fixed such that ν = 1.5 × 1010 s−1. There are
several noteworthy points. First, the shift of the wave increment is much larger in the presence
of an applied magnetic field than in its absence, which has been estimated by a term −ν/2 (see
above). Second, all curves show different crossing points in the vicinity of r0 = ±1, unlike in
the zero-ν case, where all curves are seen to pass through one and the same point at r0 = 0 and
r0 = ±1 (see, for example, the solid curve in figure 3). Third, it is clearly seen that the wave
increment grows with increasing magnetic field in both regions (r0 < −1 and 0 < r0 < 1) of
instability. This implies that the role of an applied magnetic field is additive contrary to the
zero-field case where the ν-induced instability is known to be subtractive with increasing ν.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75
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ν=1.5x1010 /sec

            B(T)
 0.000
 0.112
 0.168
 0.196
 0.224

k i (
10

6 /m
)

r
0
=v

0
/s

Figure 3. Plasma-wave increment ki as a function of the Mach number r0. The collisional freq-
uency ν is fixed (ν = 1.5 × 1010 s−1) and the magnetic field (B) is varied. The solid curve refers
to the reference curve with ν = 0.0 and B = 0.224 T. Here kr is kept fixed at kr = 4.5 × 106 m−1

for all the cases considered. Evidently, the role of the magnetic field is additive.

Figure 4 presents the absolute variation of the wave increment |ki | as a function of the
magnetic field B. We investigate practically the more interesting region (with respect to r0)
[4] in both the zero-ν and nonzero-ν cases. The middle curve that represents the ν = 0 case
is seen to lie at the absolute average of the nonzero-ν curves. It is not surprising that the
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Figure 4. Absolute plasma-wave increment |ki | as a function of magnetic field B. The middle
curve for ν = 0 is, in this sense, symmetrical with respect to r0, and represents both the stable and
unstable regions. The ν-induced asymmetry is explained by the lower and the upper curves for
ν �= 0.

magnitude of the r0 < 0 curve (i.e., in the stable region) in the nonzero-ν case is higher than
its r0 > 0 counterpart (in the unstable region). This is attributed to the ν-induced shift towards
the ki < 0 region in the third quadrant of figure 3, for example. Interestingly, the absolute
magnitude of the variation in ki is observed to increase, both in the stable and unstable regions,
with increasing magnetic field.

Figure 5 illustrates the wave increment as a function of the Mach number r0 for a given
intensity of the magnetic field B = 0.224 T. There are various points worth mentioning. Only
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06 /m
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Figure 5. Plasma-wave increment ki as a function of the Mach number r0. The collisional freq-
uency ν is varied while the magnetic field B is kept fixed. The parameters are as listed inside the
figure.
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the ν = 0 curve is observed to pass exactly through the r0 = 0 and r0 = ±1 points; the rest of
the curves follow their own trajectories. Just as in the zero-field case, the instability (stability)
of the plasma wave decreases (increases) in magnitude with increasing ν. Mathematical
complexity prevents us from estimating exactly the shift of the wave increment/decrement in
the presence of an applied magnetic field. However, the illustrative examples reveal that this
shift is larger in the presence of a magnetic field than in its absence.

Figure 6 shows the absolute variation of the wave decrement (increment) in the unstable
(stable) regions as a function of collision frequency ν. Our numerical results, subject to the
approximation imposed in equation (22), reveal that the said variation is almost linear. This
figure simply encapsulates the conclusions drawn from figure 5.

0.00 0.75 1.50 2.25 3.00 3.75 4.50
0.000

0.125
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=+0.75

r
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=-0.75

 B=0.224 T
 B=0.000 T|k

i| (
10

6 /m
)

ν (1010 /sec)

Figure 6. Absolute plasma-wave increment |ki | as function of the collisional frequency ν. The
ν-induced asymmetry is evident throughout, except at ν = 0, where the respective curves become
degenerate. The parameters used are as listed in the figure.

Finally, figure 7 illustrates a three-dimensional plot of the wave increment 2kiL as a
function of the magnetic field kcL and the Mach number r0. This figure reveals a clear-
cut evolution of the wave increment as both the magnetic field and the Mach number are
varied simultaneously. The values of kr and ν are kept fixed as kr = 4.5 × 106 m−1 and
ν = 1.5 × 1010 s−1 throughout. It is worth specifying that kcL, r0, and 2kiL represent,
respectively, the x-, y-, and z-axes of the 3D figure. A guide to how to view the figure is as
follows. Looking at the y–z plane, for example, one is furnished with an extended view of
what one sees in figure 3. Similarly, looking at the x–z plane one sees curves reminiscent of
the collection of numerous such curves seen in figure 4. The surface plot in figure 7 is also seen
to maintain its characteristic features, notable at r0 = 0 and in the vicinity of r0 = ±1, where
the wave increment is, respectively, nonzero and zero for any value of the magnetic field.

4. Discussion

We have studied the wave increment in a 2D electron plasma realizable in a short FET channel,
owing to the wave’s reflection from the device boundaries, in the presence of an external
friction and/or of a weak magnetic field. We have demonstrated that while the role of the
external friction is subtractive, the magnetic field plays an additive role. This means that, for a
given magnitude of the external friction, we expect the magnetic field to not only compensate
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Figure 7. A three-dimensional plot of the dimensionless plasma-wave increment 2kiL as a function
of the dimensionless magnetic field kcL and the Mach number r0. Here kr is kept fixed at
kr = 4.5 × 106 m−1 and ν at ν = 1.5 × 1010 s−1. This figure maintains, in a broad sense,
all the behavioural characteristics of figures 3 and 4.

the resulting decrement in the wave growth but also to overcome it. What one would do then
is adjust the intensity of the magnetic field in order to bring about the desired effect. In spite of
such favourable conditions, there is one more mechanism that opposes it. This is the internal
friction brought about by the viscous force due to the electron–electron scattering in the 2D
plasma. The viscosity µ is known [4] to cause an additional damping with the decrement
of the order of µq2, where q ≡ kr . Hence the viscosity is especially effective in damping
higher-order modes.

We believe that an exact theoretical treatment of the external and internal frictions will
probably give a better insight into the problem. In addition, since the 2D electron fluid is
describable by equations analogous to those for shallow water waves, various hydrodynamic
phenomena, such as wave and soliton propagation, the choking effect, and hydraulic jumps,
should take place.

Finally, a few words are in order on some closely associated but unresolved aspects of the
problem, which are still to be addressed in order for a successful observation of this instability
mechanism to occur. The appropriateness of the asymmetric boundary conditions, the coupling
between the electromagnetic radiation and the plasma waves, and the size effects due to the
transverse dimension need to be better understood.
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